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INTRODUCTION

The functions studied in this monograoh are a cross between
elliptic functions and modular forms in one variable. Specifically,

we define a Jacobi form on SL,(Z) to be a holomorphic function
b: Hx g > ¢ (¥ = upper half-plane)

satisfying the two transformation eauations

.

2mimez
aT +b Z
1 ¢ (cT +d *eT +d )

T+ e T g (3 2) e s,@)

e—zﬁim(ft +2)2z)

{2) $(T, zHAT+) = $(T,2) (uw € z%)
and having a Fourier expansion of the form
% 2ni(nT +
(3) $(t,2) = . Q2. c(m,r) eXMi(nT+r=)
n=0 r€Z
rzglnnm

Here k and m are natural numbers, called the weight and index of ¢,
respectively. Note that the function ¢(r,0) is an ordinary modular
form of weight %k, while for fixed T the fumction =z - ¢(1,2z) 1is a
function of the type normally used to embed the elliptic curve {/ZT + Z
into a projective space.

If m=0, then ¢ is independent of 2z and the definiticn reduces
to the usual notion of modular forms in one variable. We give three
other examples of situations where functions satisfying (1)~(3) arise
classically:

1. Theta series. Let Q: é‘] + Z be a positive definite integer
valued quadratic form and B the associated bilinear form. Then for

any vector x,€ zV the theta series

> Ox('r,z) - Z eZ‘.rri(Q(x)‘r +B(x,x,)z)
(] xEZN

s
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is a Jacobi form (in general on a congruence subgroup of ST,{Z)) of
weight N/2 and index Q(xo); the condition rzglmm in (3) arises from
the fact that the restriction of Q to Ex + Zx, 1s a positive definite
binary quadratic form. Such theta series (for N=1) were first studied
by Jacobi [10], whence our general name for functions satisfying (1)

and (2).

2. Fourier coefficients of Siegel modular forms. Tet F(Z) be a

Siegel modular form of weight k and degree 2. Then we can write Z as
(Z ;,) with zet, 1,7'€ ¥ (and Im(z)” < Im(t)Im(T')), and the
function F is periodic in each variable T, z and T'. Write its

Fourier expansion with respect to T' as

o0
2TimT'
(5) TE@) = X g (T,z) e :
m=0
then for each m the function 1>m is a Jacobi form of weight k and
index m, the condition 4nm grz in (3) now coming from the fact that F

2wi TE(1Z) .

has a Fourier development of the form X c¢(T) e
ranges over positive semi-definite symmetric 2x2 matrices. The expan-—
sion (5) (and generalizations to other groups) was first studied by
Piatetski—Shapiro [26], who referred to it as the Fourter-Jocobi
expansion of F and to the coefficients rbm as Jacobi funections, a word
which we will reserve for (meromorphic) quotients of Jacobi forms of

the same weight and index, in accordance with the usual terminclogy

for modular forms and functions.

3. The Weierstrass g—function, The fumction
(6) A = 7% P ek ity
wEZ+ZT
- w#D

is a meromorphic Jacobi form of weight 2 and index 0; we will see



w

later how to express it as a quotient of holomorphic Jacobi forms (of
index 1 and weights 12 and 10).

Despite the importance of these examples, however, no systematic
theory of Jacobi forms along the lines of Hecke's theory of modular
forms seems to have been attempted previously.® The authors' interest
in constructing such a theory arose from their attempts to understand
and extend Maass' beautiful work on the 'Saito-Kurckawa conjecture”.
This conjecture, formulated independently by Saito and by Rurokawa [15]
on the basis of numerical calculations of eipgenvalues of Hecke operators
for the (full) Siegel modular group, asserted the existence of a "1lift-
ing" from ordinary modular forms of weight 2k-2 (and level ome) to
Siegel modular forms of weight k (and also level one); in a more
precise version, i1t said that this lifting should land in a specific
subspace of the space of Siegel modular forms (the so-called Maass
"Spezialschar", defined by certain identities among Fourier coefficients)

and should in fact be an isomorphism from M (SLZ(E)) onte this space,

2k-2
mapping Eisenstein series to Eisenstein series, cusp forms to cusp forms,
and Hecke eigenforms to Hecke eigenforms. Most of this conjecture was

proved by Maass [21,22,23], another part by Andrianov [2], and the

remaining part by ome of the authors [40]. It turns out that the

* Shimura [31,32] has studied the same functioms and also their higher-
dimensional generalizations. By multiplication by appropriate elemen-—
tary factors they become modular functions in T and elliptic (resp.
Abelian) functions in 2z, although non-analytic ones. Shimura used
them for a new foundation of complex multiplication of Abelian funetions
Because of the different aims Shimura's work does not overlap with ours.
We also mention the work of R.Bermdt [3,4], whe studied the quotient
field (field of Jacobi functions) from both an algebraic-geometrical
and arithmetical point of view. Here, too, the overlap is slight
since the field of Jacobi functions for SL,{(Z) is easily determined
(it is generated over C by the modular invariant j(t) and the
Weierstrass p—function p(r,z)); Berndt's papers concern Jacobi func-
tions of higher lewvel. Finally, the very recent paper of Feingold and
Frenkel [Math. Ann. 263, 1983] on Kac-Mcody algebras uses functions
equivalent to ocur Jacobi forms, theough with a very different motivation;
here there is some overlap of their results and our §9 (in particular,
our Theorem 9.3 seems to be equivalent to their Corollary 7.11).
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conjectured correspondence is the composition of three isomorphisms

Maass "Spezialschar" C (Sp (m)
P I M, (Sp (Z))
Jacobi forms of welght % and index 1
7 1
Kohnen's ™ +"-gpace ([11]) C Mk__}i(ru(ft))
J’i
My 5 (8L (Z)) H

the first map associates to each F the function ¢1 defined by (5), the

second 1s given by

T e G2mint E Y eita—=+% o271 (nT +12) ,
nz0 n20 r’<4n

[
A

and the third is the Shimura correspondence [29,30] between modular
forms of integral and half-integral weight, as sharpened by Kohmen [11]
for the case of forms of level 1.

One of the main purposes of this work will be to explain diagram
(7) in more detail and to discuss the extent to which it generalizes to
Jacobi forms of higher index. This will be carried cut in Chapters I
and II, in which other basic elements of the theory (Eisenstein series,
Hecke operators, ...) are also developed. 1In Chapter III we will study
the bigraded ring of all Jacobi forms on SL,(Z). This is much more

complicated than the usual situation because, in contrast with the

classical isomorphism M*(SLZ(Z)) = C[Eu‘Es]' the ring J*’* = k@m Jk,m
: ]
(Jk - Jacobi forms of weight k and index m) is not finitely generated
]

Nevertheless, we will be able to obtain considerable information about

the structure of J* x- Im particular, we will find upper and lower

bounds for dim Je o which agree for k sufficiently large (kzm),

will prove that J =@ J is a free module of rank 2m over the
*,MM k k,m

ring M*(SLZ(?Z)), and will describe explicit algorithms for finding
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bases of J'k o 3§ & vector space over C and of J as a module over
7 ; *,Mm

M*(SLZ(ZZ)). The dimension formula obtained has the form
(8) dim g, o= 3 dim M 5. = N
=0
for k even (and sufficiently large), where N(m) is given by
m
Nm) = X [— —I ([x1] = smallest integer >x) .
r=0

We will show that N(m) can be expressed in terms of class numbers of

imaginary quadratic fields and that (8) is equivalent to the formula

: new _ . new +
(9) dim Jk,m = dim HZkﬁZ(Fa(mn s
new E .
where MZk_Z(l"o(m)) is the space of new forms of weight 2k-2 on I‘G(m)

which are invariant under the Atkin-Lehner (or Fricke) involution

£(T) —3m_k+]' T-2k+2 f(-1/mt) and J;‘?: a suitably defined space of
"new" Jacobi forms.

Chapter IV, which will be published as a separate work, goes more
deeply into the Hecke theory of Jacobi forms. 1In particular, it is
shown with the aid of a trace formula that the equality of dimensions
(9) actually comes from an isomorphism of the corresponding spaces as
modules over the ring of Hecke operators.

Another topic which will be treated in a later paper (by B.Gross,
W.Kohnen and the second author) is the relationship of Jacobi forms to
Heegner points. These are specific peints on the modular curve
X (m) = ZH’/I'D(m) U {cusps} (namely, those satisfying a quadratic equa-
tion with leading coefficient divisible by m). It turns out that for

each n and r with r? < 4nm one can define in a natural way a class

P(n,r) € Jac(X,{(m)) (@) as a combination of Heegner points and cusps and



.

that the sum 3" P(n,r) q" ¥ is an element of Jae (X, (m) (@
n,Yt

E)

®
2 2.

One final remark. Since this is the first work on the theory of
Jacobi forms, we have tried to give as elementary and understandable am
exposition as possible. This means in particular that we have always
preferred a more classical to a more modern approach {(for instance,
Jacobi forms are defined by transformation equations in Xx &€ rather
than as sections of line bundles over a surface or in terms of the
representation theory of Weil's metaplectic group), that we have often
given two proofs of the same result if the shorter one seemed to be too
uninformative or to depend toc heavily on special properties of the full
modular group, and that we have included a good many numerical examples.
Presumably the theory will be developed at a later time from a more

sophisticated point of view.

This work originated from a much shorter paper by the first author
submitted for publication early in 1980. In this the Saito-Kurokawa
conjecture was proved for modular (Siegel and elliptic) forms on TQ(N)
with arbitrary level N. However, the exact level of the forms in the
bottom of diagram {7) was left open. The procedure was about the game
as here in §84-6. The second author persuaded the first to withdraw his
paper and undertake a joint study in a much broader frame. Sections 2
and 8-10 are principally due to the second author, while sections 1, 3-7
and 11 are joint work. l

The authors would like to thank G. van der Geer for his critical

reading of the manuscript.
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Notations

We use W to denote the set of natural numbers, WM, for WU {0}
We use Knuth's notation l_xJ (rather than the usual [x]) for the
greatest—integer function max{nE Zingx} and similarly

[x] = min{neiﬂngx} = —L—x_l. The symbol [ denotes any square number.
By dlin we mean d|n and (d,g—)= 1. In sums of the form E or

E it is understood that the summation 1is over positive di:ilsnors only.

ad=%
The function » d° (d€W) is demoted O, (n).

The symbg‘lne(x) denotes ezmx, while e™(x) and em(x) {m € I}
denote e(mx) and e(x/m), respectively. In e(x) and em(x), x is a
complex variable, but in em(x) it is to be taken in Z/mZ ; thus
em(ab_]) means e (n) with bn = a(mod m), and not e(a/bm).

We use Mt and In for the transpose of a matrix and for the nxn
identity matrix, respectively. The symbol [a,b,c] denotes the quadrati
form ax2+bxy+cy2.

H denotes the upper half-plane {TE fL"|Im('c) >D}. The letters T
and z will always be reserved for variables in ¥ and €, respectively,
with T = u+iv, =z =x+1y, q=e(T), T =e(z). The group SL,(Z} will
often be denoted by I, and the space of modular (resp. cusp) forms of
weight k on Fl by Mk (resp. Sk). The normalized Eisenstein series
e € M (k24 even) are defined in the usual way; in particular one
has M, := f M = C[E,,E;] with E, = 1+240 L0 (a)q" ,

E = 1~-504 T o,(a)q”.
The symbol " :=" means that the expressiocn on the right is the

definition of that on the left.



Chapter I
BASIC PROPERTIES

§1. Jacobi Forme and the Jacobi Group

The definition of Jacobi forms for the full modular group
I‘1 = SLZ(I) was already given in the Intreduction. In order to treat
subgroups I' C ['1 with more than one cusp, we have to rewrite the

definition in terms of an action of the groups SLz(Z) and Z? on

functions ¢: HXC + €. This action, analogous to the action

(0 El D = (eT+a™ £ (ﬁ) (M - (2 HE 1"1)

.
in the usual theory of modular forms, will be important for several,
later constructions (Eisenstein series, Hecke operators). We fix

integers k and m and define

a b - k mf -cz? at+b Z
@ (cblk,m[u d])(T’z) S e (c‘f+d)¢(c1+d *er+d

(¢ de=r)

and

(3) @] [ uD(r,2) := e"OPT+2h2) ¢ (1,2 + AT + W)
(Ow ez,

i .
where em(x) - 82 Cas (see "Notations"), Thus the two basic transfor—

mation laws of Jacobi forms can be written

ol M=¢ MET), ¢l Xx=4 (xez?),

m

where we have dropped the square brackets around M or X to lighten

the notation. One easily checks the relations

=B
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(¢|k;mM) Ik,mM’ = ¢|k’m(m{') " ((blm){) |mx' = ¢|m(x_+x') ,

(4)
(:blk’mn) [mm = @0 [ M MM ET,, Xxez?) .

They show that (2) and (3) jointly define an action of the semi-direct
product I‘f =T K Z® (= set of products (M,X) with MET, X e z?
and group law (M,X)(M',Xx')=(MM',XM' +X'); notice that we are writing
our vectors as row vectors, S50 1"] acts on the right), th_e (full)
Jacobl group. We will discuss this action in more detail at the end

of this sectiom.

We can now give the general definition of Jacobi forms.

Definition. A Jacobi form of weight k and inder m (k,m € W) on
a subgroup I' C [‘1 of finite index is a holomorphic function ¢: ¥ x@ »
satisfying
1 ¢l M=o METD;

i) 9| x = ¢ (X € z2°);

iii) for each M€&T,, cbfk’mM has a Fourier development of the
form Ze(n,r)q"c" (g=e(1), T=e(2)) with c(a,r) =0
unless n > r/4m. (If: ¢ satisfies the stronger condition
e(n,t) # 0 = n>r?/4m, it is called a cusp form.)

The vector space of all such functions ¢ is denoted .]k’m(T') s if

I'=T, we write simply J for Jk,m(r‘l) .

k,m

Remarks., 1. The numbers n,r in iii) are in general in @, not
in Z (but with bounded denominator, depending on I' and M).

2. We could define Jacobi forms with character, Ik’m(F,X), by
inserting a factor X(M) in i) in the usual way.

3. Also, we could replace z® by any lattice invariant under T,
e.g. by imposing congruence conditions module N if I'=T(N). It would

therefore be more proper to refer to functions satisfying f)-iii}
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as Jacobi forms on the Jacobi group T'J = I' X ZE (rather than on T).
However, we will not worry about this since most of the time we will
be concerned orly with the full Jacobi group.

Our first main resulr is
THEOREM 1.1. The space J_ (1) is finite-dimensional.

This will follow from two other results, both of independent

interesgt:

THEOREM 1.2. Let ¢ be a Jacocbi form of index m. Then for
fizxed TEIH, the function ztv—> ¢(1,2), if not identically zerc, has
exactly 2m zeros (counting multiplicity) im any fundamental domain for

the action of the lattice Zr+ I on €.

Procf. It follows easily from the transformation law i) that

1 ¢,(T,2) ot .

575 (% RS dz = Im (¢, = 3z ° F = fundamental domain for &/ZT+Z)
F

2-1'[—1 “EZ* is invariant under z - z+l1 and changes by Zm

when one replaces z by- z+7T), and this is equivalent to the statement

{the expression

of the theorem. Notice that the same proof works for ¢ meromorphie
(with "number of zeros" replaced by "number of zeros minus number of
poles") and any me€ Z. A consequence is that there are no holomorphic
Jacobi forms of negative index, and that a holomorphic Jacebi form of
index 0 1is independent of 2z (and hence simply an ordinary modular form

of weight k in T).

THEOREM 1.3. Zet ¢ be a Jacobi form on I' of weight k and
index m and A,y rattonal rumbers. Then the function
£(ty = em(l\z‘r) & (T, AT+ 1) is a modular form (of weight k and on some

gubgroup of I'' of finite index depending only on T and om A,u).
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For A=u=0 it ig clear that T » $(T1,0) is a modular form of
weight k on I'. We will prove the pemeral case later on in this sectio
when we have .developed the formalism of the action of the Jacobi group
further. Note that the Fourier development of f(T) at infinity is

}: e(rw)e(n,r) e((mk2 +rA+n)T) N

n,r

so that the conditions n2z0, r? < 4nm  in the definition of Jacobi
forms are exactly what is required to ensure the holomorphicicy of f
at © in the usual sense.

To deduce 1.1, we pick any 2Zm pairs of rational numbers

(A;-Hy) € @ with (A;,Hy) # (A,,n.) (mod Z") for i#3j. Then the

173
functions fi('r) = em(J\;T)q)(T, .XiT+ui) lie in Mk(I'i) for some

subgroups I'i of T, and the map ¢ » {fi} is injective by Theorem 1.2

i
Therefore dim Jk (I < I dim Mk(l“ }; this proves Theorem 1.1 and
,m i i
also shows that Jk - is 0 for k<0 unless k=m=0, in which case it
b

reduces to the constants.

To prove Theorem 1.3, we would like to apply (3) to (A,u) € Q2.
However, we find that formula (3) no longer defines a group action if

we allow non-integral A and u, since
o LA uD | [ W' I)(r,z) =

= em(A‘Zr +20z + AT 20z HA T A ) (T, 2+ AT HAz )

e(2mku')(¢|m[}\+)\' uwHu'l) (1,2)

and e(2mA’'p) will mot in general be equal to 1. Similarly, the third
equation of (4) breaks down if X is not in Z® . Hence if we want to
extend our actions to SLZ(@) {or SLE(IR)) and Qz {or ]Rz), we must
modify the definition of the group action.

The verification of the third equation in (4) depends on the two
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elementary identities

z+k1‘t+u1

cT+d c:‘t+d+u = cT+d 2
2 aTt+b z cz? 2 C(Z+A1T+“1)2
A cT+d+2}LcT+d'_"H_cT+d+A“ = A1T+2llz—ﬁc%r+d +J\l

a b
c d

€ SL,(R) and X = (Xp) € R? we should replace

where (}\1 pl) = (A Ll)(

a b
arbitrary M_(c é

). Thus to make this equation hold for

(3) by

(5) (¢ [ uld 1,2y := eT(A T + 2z + AYO(T, z+ AT+ 1)

(W & R

this is compatible with (3) because em(lu) =1 for A,u € Z.

Unfortunately, (5) still does not define a group action; we now find
L e m Tt v
(6) Gl X" = e'Ou' -2'wol (x+x")
=0 w, xX'=@"y) er?) .

To absorb the extra factor, we must introduce a scalar action of the

group R by
(7 (o] (K1} (T,2) 2= e(me)$(T,2) (KER)

and then make a central extension of R’ by this group R; 1i.e.

replace R® by the Heisenberg group
e = {[Aiw,<] ] O,w e R?, keRr} ,
[Ow,edl" 1) ,"] = [OA" uH’), g+’ +20" -A"u] .

{This group is isomorphic to the group of upper triangular unipotent

3 x3 matrices via
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1 A LK+ AR
[CA p),] ——> 0 1 u L&

0 0 1

The subgroup C]R 1= {[(0 0) .k}, ke ]R} is the center of H._, and

R

H]R/C]R = R?. We can now combine (5} and (7) into an action of H‘R

by setting
@IE WLkl (T,2) = e T+2 iz + u+K)d(T, z+AT+w) ,

and this now £8 a group action because the extra factor e (A'u-Aiu')

in {6) is compensated by the twisted group law in H Because this

R
twist involves Ap' -*,\r]_[ = det (;\, 1:‘) and the determinant is preserved

by SL,, the group SL,{(R) acts on H on the right by

R

[X,<]M = [XM,k] (XER?, kER, M€ SL(R) ;

the above calculations then show that all three identities (&) remain

true if we now take M,M' & SL,(R) and X,X'€ Ho and hence that

equations (2), (5) and (7) together define an action of the semidirect
product S‘LZ(IR) 4 HIR'

In the situation of usual modular forms, we write ¥ as G/K,
where G = SL,(R) contains [ as a disérete subgroup with Wol(I'\G)

finite and K=S0(2) 1s a maximal compact subgroup of G. Here we would

like to do the same., However, the group SL,(R) X H
J

contains
R

" = I'x Z° with infinite covolume (because of the extra R in H]R)
and its quotient by the maximal compact subgroup S50(2) is X Cx R
rather than I x €. To correct this, we observe that the subgroup ZCR

acts trivially in (7), se that (2), (5) and {7) actually define an

action of the quotient group

J
G i= SL(R) ®& H]R/CZ "
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Here it does not matter on which side H]R we write CE s since C is
central in H; the quotient Hm/Cz is a central extension of R? by
s* = {ze€c| [c] =1} (£ = e(k)) and will also be denoted R'+S'.

Now FJ is a discrete subgroup of G with Vol(I'J\GJ) < e, and if we

choose the maximal compact subgroup

g7 = so@yxstc ¢l-= SL,(R) % (R*+s")

then G‘]/K'] can be identified naturally with 3 x ¢ via

a b T ai+b  Ai+p
[(c d)' a U)’CJK A (ci+d ’ ci+d)

The above discussion now gives

J

THEOREM 1.4. Let G be the set of iriples [M,X,z} (M€ SL, (R),

XeRrR?, €€, |z]=1). Then el is a group via

Dozl %', '] = Do, weex', ge's e (dee ()]

and the formula

o] [(: 3). O wse

(et +d) ¥ (—

e

(T,2)

| (s

clz+ At +u)2

2
= Td +}\T+2?\z+3\u)

at+b Z+AT+U
¢ ct+d 7 cT+d

defines an action of ¢! on i¢ Kx€ > L. The functions ¢ saiisfying

the trangformation laws 1) and ii) of Jacobi forms are precisely those

invariant with respect to this action wader the diserete subgroup

]

rd - r xz? of G, and the space of such ¢ can be identified via

F(g) = (¢]|g){i,0)

J

with the set of functions F: ¢l + ¢ left invariant wnder TV and

trans forming on the right by the representation
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~sin €@ cos @

F(g_[( cos € sin e)’ © 0),?;]) - MR8 po

of the maximal compact subgroup K7 = 50(2)x s of c’.

Thus the two integers k "and m in the definition of Jacobi forms
appear, as they should, as the parameters for the irreducible (and here
one-dimensional) representations of a maximal compact subgroup of GJ.

As an application of all this formalism, we now give the proof

of 1.3. The function f{r) in that theorem is up to a constant

(namely e (\u)) equal to (1) = (@ |X)(1,0), where X=(} p) € @’

and ¢|X is defined by (5) (from now on we often omit the indices k,m

] 2
on the sign | ). For X' = (' u') € 2® we have

Sy (T = @MW = AT (T)

by (B6), so tbx depends up to a scalar factor only on X (mod %Z*) and ¢X

) . b
itself depends only on X (mod NZ?) if X & N 'Z®. For M= (2 d) er

we hawve

crr ™ ¢y (EE2) - wixlwe,0
= @Ml @D (r,0
= (¢| (D) (T,0)

¢XM(T) ,

s0 ¢X behaves like a modular form with respect to the congruence

subgroup

{Mer

2 X
M=% (mod Z2%), m-det(m) & z}
of T (this group can be wWritten explicitly

{(a S)E T'| a=1)A + ey, bA+ (d-1)u, mlcu®+(d-a)Au - bA%) € z}

c
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N
and hence contains ' N F(ﬂ) if Nx € Z° ). Finally, if M 1is any
]

element of I‘l then
(gl (D) = @P[x0 (r,0) = 05T + A1) (B[ (T, 4,7+ uy)
k

where (A, U,) = XM, and since ¢|M has a Fourier development contain-
ing qn‘:r only for 4nm > r?, this contains only nonnegative powers of
e(T) by the same calculation as given for M=1Id after the statement

of 1.3.

We end with one other simple, but basic, property of Jacobi forms

THEOREM 1.5. The Jacobi forms form a bigraded ring.

Proof. That the product of two Jacobi forms ¢1 and ¢z of

weight I, and k, and index m, and m respectively, transforms like

2
a Jacobi form of weight k = k1+ k, and index m =m +m, is clear;
we have to check the condition at infinity. One way to see this is to
use the converse of Theorem 1.3, i.e. to observe that the condition
at infinity for a Jacobi form ¢(t,z) of index m is equivalent to the
condition that f£(1)} = em(lzT)¢()\T+u) be holomorphic at « (in the
usual sense) for all A,u € ©@; this condition is clearly satisfied for
$(T,2) = ¢1(T,z)¢2 (t,z) with £(1) = £,(DDf,{(1). A more direct proof
is to write the (n,r)~Ffourier coefficient of ¢ as

c{n,r) = Z e, {n,,r)e,(n,,t,)

n,+0,=n
T, +T,=T

where the e, are the Fourier coefficients of ¢:1 {(the sum is finite

2
i

2

gince mn, £ n, r; £ Animi) and deduce the inequality r° g 4nm from

i
the identity
2 2

2 2
(ry+1,) ) . T . (mlrz—mzrl)
Bt 4(m, +m, ) ; Ty 4m 27 %m 4mym, {m,+m, ) -

2
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This identicty also shows that (as for modular forms) the product ¢'¢2

is a cusp form whenever ¢, or ¢, is one but that (unlike the situation

for modular forms) rj;ltbz can be a cusp form even if neither ¢:1 nor ¢2 is.
The ring J*,* = & Jk m of Jacobi forms will be the object

,m 2

of study of Chapter I[II.

§2. Eisenstein Series and Cusp Forms

As in the usual theory of modular forms, we will obtain our
first examples of Jacobl forms by constructing Eisenstein series. In

the modular case one sets (for k> 2)

B () = Z U = % ), (™ |

YET\T, c,deZ
(c,d)=1

where [ = {t é ;‘)|n€ Z} 1is the subgroup of I of elements Y with
1|k =1, where 1 denotes the constant function. Similarly, here we

define

) Bea®? = D I,

Tl
y& Iy

where

> {[( )(uu)] fnuezf .

Explicitly, this is

2
-k +b z cz
(2) Ek’m('r,z) = 5 Z Z (cT+d) ()LZ a;rd R ;CT+d)

c.d€Z AEZ
(c,d)=1
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where a,b are chosen so that (2 :) € T, . As in the case of modular

forms, the series converges absolutely for k2 4; it is zero if k is
odd (replace c,d by —c,-d). The invariance of Ek. . under I'j is

>
clear from the definition and the absolute convergence. To check the

cusp condition, and in order to have an explicit example of a form in

, we must calculate the Fourier development of E , which we now

J
k,m ksm

proceed to do.
As with Ek’ we split the sum over c¢,d into two parts, according

as ¢ is O or mot. If c¢=0, then d=12*1; these terms give a contributi

2
(3 T fRlrenz) = L ™
AEZ AEZ
(@ = e2™T, ¢ = &®™%)  This is a linear combination of q"z® with

4om = 2 and corresponds to the constant term of the usual Eisenstein

series. If c#0, we can assume c >0 (since k 1is even); using the

identity
2 2
at+h z cz® c{z-A/ec) ai
= P L . LAY S SR B4
cT+d A cr+d cT+d cT+d c (c£0)

we can write these terms as

o 2 2
-k ( d) m (z~-A/c) ai )
T+ = e |- >—H— + =& 2
Z ':I;Z AEE:R c ( T+dfe c
{d,e)=1

Note that d + d+¢ and A * A+c correspond to z + z+1 and T -+ T+1,

so this part equals

(4) ¥ ok Z Z e (md ™ A%) Fk,m(r+%,z—

=1 d {mod ¢} A(mod c¢)
(d,e)=1

o[>
S

with e as in "Notations" and
c
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- -k m (z+ q)?
P, (T,z) := (T +1 (_ _3+) .
k,m p,qzez T + p) e S ;

the function 'E‘k,m is periodic in T and z, so (4) makes sense. MNow

the usual Poisson summatrion formula gives

Fooo= 2 v g%t
kJm n,re X
with
( -k 2
y{n,r) = j T  e{-nT) J e(-mz* /T - rz) dz dr
Im(r)=C, Im(z)=C,

(C1> 0, C, arbitrary). The inner integral is standard and equals

PR, 2 7
(1/2im)? e(r°Tt/4m). Hence

Y(n,r) = J T_k(r/:zim);5 e(f—zl'—;;f‘u“'“* T) dt
Im(T)=C,
0 if 2 p 4mm
Otkmlgk(énm - rz)k—% Af r?<4nm
with
(1y¥/2 ks

B 2572 1 (k -3)

(if rZZJmm, we can deform the path of integration to +i=, so vy=0;
if r? < 4nm, we deform it to a path from -iw to =-i® c¢ircling 0 once
in a clockwise direction and obtain a standard integral representation
of 1/T(s) ). Substituting the Fourier development of Fk,m into (4}

gives the expression

E e, m () Sl

n,r€Z
4nm > r?

with
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%k 2k_:y2 = -k E ~-1y2
k’m(ﬂ.f) = m—k—_f (4nm— r*) E [ ec(md A -k +nd)
c=1 A,d(mod ¢)
(d,e)=1

(5) e

(for d”', see "Motations™). To calculate this, we first replace X by

dA in the inner double sum (since (d,c) =1, this simply permutes the
summands); then the summand becomes ec(dQ(l)) with Q(A) := ml2+r,\+n.

We now use the well~kpown identity

D@ = D wa,

d(mod ¢) al(c,N)
{d,e)=1

where } is the Mobius function (so-called Ramanujan sum; see Hardy—

Wright or most othet number theory texts); then the inner double sum

in (5) becomes

2 w(a E : 1
ale A(mod c)
Q(A) = 0{mod a)

Now the condition Q{A)=0(mod a) depends only on X (mod a), so the

inner sum is % times Na(Q), where

N,(Q) = #{A(mod a) | Q(X) = 0(mod a)}

Hence the triple sum in (5) simplifies to

1-k R - —137¢ g
P2 LN = gyt 3 a0

alec a=1 a

(the last equality follows by writing c¢=ab and using E].,t(l-))b_S = g(s)_’ ).
To calculate the Dirichlet series, we first calculate N,{(Q) for (a,m)=1;
this will suffice completely if m=1 and (using the obvious multiplica-
tivity of Na) will give the Dirichlet series up to a finite Euler

oroduct involving the prime divisors of m in general. If (a,m)=1,
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then
N (Q = #{A(mod a) | m\* +ri+n = O(mod a)}
= #Himod @) | (2mi+1)* = r’~inm (mod 4a)}
= N (" - 4om)
where

Ny(D) = #{x(mod 2a)[ x*=D(mod 4a)} .

It is a classical fact that

a3
” -s L G(s)
(6) ; N, (D)a e

a=1
if D=1 or if D 1is the discriminant of a real quadratic field,
where LD(s) = L{s, -D-)) is the Dirichlet L-series associated to D.
It was shown in [39, p.130] that the same formula holds for all DEZ

if LD(s) is defined by

0 if D# 0,1 (mod 4),
LD(S) = z(2s-1) if D=0 ,

Dy -
LDG(S)‘d% ned) (?O)d ® 0,_, (£/4) if D=0,1 (mod &), D#0

where in the last line D has been written as D, f° with f€WN and
D, = discriminant of Q¢(/D) (the finite sum in this case can also be

written as a finite Euler product over the prime divisors of f)}.

Inserting (6) into the preceding equations, we find that we have proved

k%2

o 1 (1) = o D] Z(2k-2)"" L (k-1)

if m=1 and D =r?-4n< 0, while for m arbitrary there is a similar

formula (now with D = r? -4nm) but multiplied by an Euler factor
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involving the prime divisors of m. Using the functional equations of

LD(S) and §(s) we can rewrite this formula in the simpler form

o (M) = Ly(-)/5(3-2%)

where now all numerical factors have disappeared. The values LD(Z-k)
(D<0, k even) are well-known to be rational and non-zero; they have
been studied extensively by Cohen [6], who denoted them H(k-1, |D|).

Summarizing, we have proved

THEOREM 2.1. 7The series Ek n (k2 & even) converges and defines
E— s

a non-zero element of J . The Fourier development of E ig
k,m k,m

givern by

B T2 = E &, m(®1) qEr
n,r€ &

4nm z r?

where ey m(n,r) for Aom =1 equales 1 <f © = O(mod 2m) and 0 other-
s

wige, while for 4nm>rt? we have

H(k~-1, 4n-r?)

e, 1{mr) = £(3-2k)

(H(k-1,N) = L_N(Z—k) = Cohen's function) and

2
w ELEELy dime & =TI (elementary p-factor) .

e _(n,r) =
,m'? 32K
k,m [3¢ ) p|m
In particular, e, _(n,r) €@Q.

One can in fact complete the calculation of e o in general with
»

little extra work; the result for m square-free is

-1
g (m)
T i E k-1 4nm — ¢
(7) ek’m(n,r) TS d H(k—I,T)

dl(n,r,m)
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However, we do not bother to give the calculation since this result
will follow from the properties of Hecke-type operators introduced in
§4 (Theorem 4.3).

For m=1 and the first few values of k we find, using the tables

of H(k-1,N) given in [6], the expansions

B = 1+ (52 4560+ 1264560 +C g

4+ (12622 + 5760+ 756 + 5760 L+ 1267 2)g°

1

+ (5673 + 75602 + 15120+ 2072+ 15128 + 7562 2 4568 )’ + ...

E = 1+ (g2 -88C-330-882 +% g

4+ (=33072 - 42247 — 7524 — 42262 - 3302 )2 + ...,

1 2, 2

E = 14+(C? + 56 + 366 + 56C L 4+ T C¥gt ... .

]

Further coefficients of these and other Jacobi forms of index 1 are

given in the tables on pp.l4l-143.

In the formula for the Fourier coefficients of Ek 1 it is
?
striking that e l(n,t) depends only on 4n-r1?. Ve now show that this
»

is true for any Jacobi form of index 1; more generally, we have

THECREM 2.2. Let & be a Jacobi form of index m with Fourier

development Ec(n,r)q?z’. Then c(n,r) depends only on bnm—1? and on
r{mod 2m). If k is even and m=l or m <ig prime, then c(n,r) depends

only on 4am-12, If m=1 and k is odd, then ¢ is identically zero.

Proof. This is essentially a restatement of the second transfor-

mation law of Jacobi forms: we have
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Ze(n,mgtt = ¢(r,2) = "(IT+2A2)¢(r,z+AT+1u)
N2 g c(n,r)q"(za™)*
= T cn,r) qn+r)\+m§\2 c'::-+—2r.u)\
and hence
cln,ry = c(n+rA+m?, r+2m\) .
i.e. c(n,r)=c(n',r") whenever r' = r{mod 2m) and 4n'm-r'? = 4om-7r

as stated in the theorem. If k is even, then we also have
c(n,~r) = c{n,r) {(because applying the first transformation law of
Jacobi forms to -I,€ I‘1 gives $(T,-2) = (-1)k¢(T_.z)), so if m is 1

or a prime, then

12

4n'm-r = 4nm-r® = r' = tr(mod 2m) = c(n,r) = c¢{n',r")

Finally, if m=1 and k is odd then $#=0 because c(n,-r) = -ci{n,r)

but 4nm - (»-r)z = 4om-1r? and -r = r(mod 2m) in this case.

Remark: Theorem 2.2 is the basis of the relationship between

Jacobi forms and modular forms of half-integral weight (cf. §5).

In the definition of Jacobi cusp forms, there were apparently
infinitely many conditions to check, namely c({n,r) =0 for all n,r with
4nm=r1?. Theorem 2.2 tells us in particular that we in fact need only
check this for a set of representatives of r (mod 2Z2m). The number of
residue classes r(mod ?m) with r? = O(mod 4m) +s b, where b® is the

largest square dividing m (namely if m=a2b? with a square-free, then

4m|r? = Zab|r). Thus for ¢ € Jy o ve have
¢ a cusp form = c(as®, 2abs) = 0 for s=0,1,...,b=-1 ;

in particular, the codimension of “Tl'iu:lp in Jk i is at most b. Using
» >
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e(n,-r) = (_l)kc(n,r) we see that in fact it suffices to check the

condition c(as®,2abs)=0 for s=0,l,..-;‘_%_} 1f k is even and

b-1 " y
s=1,2,...,{TJ if k dis odd. Hence we have

Cusp . "
¥ m 1 Jk,m 13 at most
b

| 2]+1 5 % is cven (resp. l_%_] if k is odd), where b is the

THEOREM 2.3. The codimension of J

largest integer such that b%|m.

On the other hand, if k>2 then for each integer s we can

construct an Eisenstein series

2
(8) . qas 2abs[“{
3

yerhrd

(n=ab® as above), where the summation is the same as in the definition
of Ek,mzﬁk,m,w Then repeating the beginning of the proof of

Theorem 2.1 we find that

2
) B - E & e B e Ty o e,
re X
r = 2abs (mod 2m)

where " ... " (the contribution from all terms in the sum with c# 0) has
a Fourier development consisting only of terms q"zF with 4mm-t? >0.

It is then clear that Ek _— depends only on s(mod b), that
¥

?
k
= - i < L
Ek,m,—s (-1) Fk,m,s’ and that the series Ek,m,s with 0 £ s £ 5
{(k ever) or 0<s <~g (k odd) are linearly independent. Comparing this
with 2.3, we see that the bound given there is sharp and that we have

proved:

- _ scusp Eis cusp

THEOREM 2.4. If k> 2, then Jk,m Jk,m ® Jk,m , where Jk,m

is the space of cusp forms in Jk i and Jﬁlli ig the space spanned by
) s
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the functions Ek m.s" The functions Ek n.s with 0 £ s £ g—(k even)

or 0< 5<% {(k odd) form a basisa Jﬁ‘j‘: i

We will not give the entire calculation of the Fourier develcpment
of the functions Ek,m,s here, since it is tedious and we do not need
the result. However, we make some remarks. In §4 we will introduce
certain operators UJ?. and VE which map Jacobi forms to Jacobi forms of
higher index. These will act in a simple way on Fourier developments
and will send Eisenstein series to Eisenstein series. Hence certain
combinations of the Ek,m,s ("old forms") have Fourier coefficients which
can be given in a simple way in terms of the Fourier coefficlents of
Eisenstein series of lower index (compare equation (7), where the

coefficients of E are simple linear combinations of those of Ek 1),
’

k,m
and we need only consider the remaining, "new", forms. A convenient

basis for these is the set of forms

(10) nf‘i i Z X(s) B g Giim £
s(mod £)

of index fz, where X is a primitive Dirichlet character (mod f} with
X{-1) =(—l)k. Then a calculation analogous to the proof of Theorem 2.1

for the case m=1 shows that the coefficient qncr in Eéxi is giwven by
»

au e = et XD Loz (25,50

if (r,f) =1, where LD(s,X) is the convolution of LD(S) and L(s,X)
and e(X) a simple constant {essentially a quotient of Gauss sums
attached to X and X° divided by L(3-2k, X%y in particular, the
coefficients are algebraic (in @(X)) and non-zero. If (r,f) >1, then
eé?;(n,r) is given by a formula like (11) with rhe right-hand side

multiplied by a finite Euler product extending over the commor prime
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factors of r and f£f.

If k=2, then the Eisenstein series fail to converge; however, by
the same type of methods as are used for ordinary modular forms ("Hecke's
convergence trick") one can show that for X non-principal there is an
Eisensteln series EZ,m,X € Jz,m having a Fourier development given by
the same formula as for k> 2. Since X must be even (X(-1) = (—1)k) and
since there exists an even non-principal character (mod b) only if b=35
or bz 7, such series exist only for m *divisible by 25, 49, 64, ... .

There is one more topic from the theory of cusp forms in the
classical case which we want to generalize, namelvy the characterization

of cusp forms in terms of the Petersson scalar product. We write
T = ut+iv (v>0) , z = x+iy

and define a volume element dV on H*© by

(12) av == v_adx dy du dv 3

It is easily checked that this is invariant under the action of GJ on
H=x T defined in 81 and is the unique G"Iw-invarianl: measure up to a
constant. (The form v 2dudv is the usual SLZ(TR)—irwariant volume form
on H; the form v ldx dy dis the translatiop~invariant volume form on C,
normalized so that the fibre C€/ZT+2Z has volume 1.) If ¢ and
trapnsform like Jacobi forms of weight k and index m, then the
expression

2 ST S
VTV yn 2y BT

" i J .
is easily checked to be invariant under I", s0 we can defipe the

Petersson scalar product of ¢ and ¥ by

(13) o) = f vk e MY iy T av .
Maexe



